Skip to main content

Python Calculations in Jupyter with Handcalcs

 Jupyter notebooks allows LaTeX rendering inside markdown. This way you can write complex math equations within a notebook. While LaTeX is the de facto standard for scientific documents, it hasn't a very friendly and intuitive syntax. handcalcs is an Open Source library for converting Python calculations into rendered LaTeX: just write the symbolic formula, followed by numeric substitutions and that's it. After install it (it is available through PyPI), in the simplest case you just need to import the render class and use the %%render magic command to render the content of a cell:

Here another example of equation render and numeric substitution:

It is also possible to render just the symbolic equation:

or any way generate the corresponding LaTeX code:

By default handcalcs renders code vertically, but it is possible to use the %%render params magic to save space by rendering in a single line or show just the result of a calculation:

handcalcs allows to adjust precision, use Greek symbols, use custom functions, render inline comments, include conditional statements, use units (along with the forallpeople or pint packages), export to HTML or PDF (the latter via LaTeX).

After starting evaluation of this library, I can confirm that from a user experience standpoint it is definitely better that writing directly in LaTeX syntax within a notebook. All the features listed in the documentation work as expected. Only downside is that, at the moment this post is written, there is not yet full support for all the functions and symbols available in LaTeX (but I am quite sure this library will become more comprehensive in the future). Also, unfortunately the Python code render doesn't work in Colab: the %%render magic renders a cell into LaTeK content:


 

Comments

Post a Comment

Popular posts from this blog

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...

Load testing MongoDB using JMeter

Apache JMeter ( http://jmeter.apache.org/ ) added support for MongoDB since its 2.10 release. In this post I am referring to the latest JMeter release (2.13). A preliminary JMeter setup is needed before starting your first test plan for MongoDB. It uses Groovy as scripting reference language, so Groovy needs to be set up for our favorite load testing tool. Follow these steps to complete the set up: Download Groovy from the official website ( http://www.groovy-lang.org/download.html ). In this post I am referring to the Groovy release 2.4.4, but using later versions is fine. Copy the groovy-all-2.4.4.jar to the $JMETER_HOME/lib folder. Restart JMeter if it was running while adding the Groovy JAR file. Now you can start creating a test plan for MongoDB load testing. From the UI select the MongoDB template ( File -> Templates... ). The new test plan has a MongoDB Source Config element. Here you have to setup the connection details for the database to be tested: The Threa...

Evaluating Pinpoint APM (Part 1)

I started a journey evaluating Open Source alternatives to commercial New Relic and AppDynamics tools to check if some is really ready to be used in a production environment. One cross-platform Application Performance Management (APM) tool that particularly caught my attention is Pinpoint . The current release supports mostly Java applications and JEE application servers and provides support also for the most popular OS and commercial relational databases. APIs are available to implement new plugins to support specific systems. Pinpoint has been modeled after Google Dapper and promises to install agents without changing a single line of code and mininal impact (about 3% increase in resource usage) on applications performance. Pinpoint is licensed under the Apache License, Version 2.0 . Architecture Pinpoint has three main components:  - The collector: it receives monitoring data from the profiled applications. It stores those information in HBase .  - The web UI: the f...