Skip to main content

Python Calculations in Jupyter with Handcalcs

 Jupyter notebooks allows LaTeX rendering inside markdown. This way you can write complex math equations within a notebook. While LaTeX is the de facto standard for scientific documents, it hasn't a very friendly and intuitive syntax. handcalcs is an Open Source library for converting Python calculations into rendered LaTeX: just write the symbolic formula, followed by numeric substitutions and that's it. After install it (it is available through PyPI), in the simplest case you just need to import the render class and use the %%render magic command to render the content of a cell:

Here another example of equation render and numeric substitution:

It is also possible to render just the symbolic equation:

or any way generate the corresponding LaTeX code:

By default handcalcs renders code vertically, but it is possible to use the %%render params magic to save space by rendering in a single line or show just the result of a calculation:

handcalcs allows to adjust precision, use Greek symbols, use custom functions, render inline comments, include conditional statements, use units (along with the forallpeople or pint packages), export to HTML or PDF (the latter via LaTeX).

After starting evaluation of this library, I can confirm that from a user experience standpoint it is definitely better that writing directly in LaTeX syntax within a notebook. All the features listed in the documentation work as expected. Only downside is that, at the moment this post is written, there is not yet full support for all the functions and symbols available in LaTeX (but I am quite sure this library will become more comprehensive in the future). Also, unfortunately the Python code render doesn't work in Colab: the %%render magic renders a cell into LaTeK content:


 

Comments

Post a Comment

Popular posts from this blog

Exporting InfluxDB data to a CVS file

Sometimes you would need to export a sample of the data from an InfluxDB table to a CSV file (for example to allow a data scientist to do some offline analysis using a tool like Jupyter, Zeppelin or Spark Notebook). It is possible to perform this operation through the influx command line client. This is the general syntax: sudo /usr/bin/influx -database '<database_name>' -host '<hostname>' -username '<username>'  -password '<password>' -execute 'select_statement' -format '<format>' > <file_path>/<file_name>.csv where the format could be csv , json or column . Example: sudo /usr/bin/influx -database 'telegraf' -host 'localhost' -username 'admin'  -password '123456789' -execute 'select * from mem' -format 'csv' > /home/googlielmo/influxdb-export/mem-export.csv

jOOQ: code generation in Eclipse

jOOQ allows code generation from a database schema through ANT tasks, Maven and shell command tools. But if you're working with Eclipse it's easier to create a new Run Configuration to perform this operation. First of all you have to write the usual XML configuration file for the code generation starting from the database: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-2.0.4.xsd">   <jdbc>     <driver>oracle.jdbc.driver.OracleDriver</driver>     <url>jdbc:oracle:thin:@dbhost:1700:DBSID</url>     <user>DB_FTRS</user>     <password>password</password>   </jdbc>   <generator>     <name>org.jooq.util.DefaultGenerator</name>     <database>       <name>org.jooq.util.oracle.OracleDatabase</name>     ...

Using Rapids cuDF in a Colab notebook

During last Spark+AI Summit Europe 2019 I had a chance to attend a talk from Miguel Martinez  who was presenting Rapids , the new Open Source framework from NVIDIA for GPU accelerated end-to-end Data Science and Analytics. Fig. 1 - Overview of the Rapids eco-system Rapids is a suite of Open Source libraries: cuDF cuML cuGraph cuXFilter I enjoied the presentation and liked the idea of this initiative, so I wanted to start playing with the Rapids libraries in Python on Colab , starting from cuDF, but the first attempt came with an issue that I eventually solved. So in this post I am going to share how I fixed it, with the hope it would be useful to someone else running into the same blocker. I am assuming here you are already familiar with Google Colab. I am using Python 3.x as Python 2 isn't supported by Rapids. Once you have created a new notebook in Colab, you need to check if the runtime for it is set to use Python 3 and uses a GPU as hardware accelerator. You...