Skip to main content

Diagrams as Code with Python

 In my career I have noticed that often organizations are reluctant on providing Engineering teams with licenses for software to draw diagrams. In the best case scenarios MS Visio is usually the only option available, which isn't the best experience when trying to draw modern software architectures. Several online options are available, but they require to share project details that cannot leave your organization network, so they couldn't be taken into account often. Also, while treating everything as code, it would be nice to have also diagrams as code. All these needs can be satisfied by adopting Diagrams. It is an Open Source Python package that allows you draw cloud system architecture diagrams programmatically and then put them under version control, (as at the end they are regular Python files). It supports cloud (AWS, Azure, GCP, Alibaba, Oracle) and on-prem system architecture diagrams. The Diagrams nodes include also Kubernetes, programming languages and frameworks.

Diagrams supports Python 3.6+ and requires the Open Source Graphviz visualization software for the rendering. Once Graphviz has been installed, Diagrams can be obtained through PyPI or Anaconda.

Diagrams is intuitive to use and it is based on the following concepts:

  • Diagram: self-explaining :)
  • Node: a single system component object.
  • Cluster: a local cluster context.
  • Edge: a connection between nodes. They come with several additional properties.
The official Diagrams documentation is comprehensive, so I am not going to deep dive into available components, but I am going to show a concrete code example to generate a diagram for a generic AWS serverless data integration hub:


Once this source code has been saved, it can be executed same as any other Python script:

python aws_data_integration.py

At the end of the execution it produces a PNG image (PNG is the default format if a different one among those (others are JPG, SVG and PDF) supported by Diagrams hasn't been specified) in the same directory where the script has been executed. The image name is derived from the label specified for the Diagram object. Here is the serverless_data_integration.png generated diagram:





Comments

Popular posts from this blog

Exporting InfluxDB data to a CVS file

Sometimes you would need to export a sample of the data from an InfluxDB table to a CSV file (for example to allow a data scientist to do some offline analysis using a tool like Jupyter, Zeppelin or Spark Notebook). It is possible to perform this operation through the influx command line client. This is the general syntax: sudo /usr/bin/influx -database '<database_name>' -host '<hostname>' -username '<username>'  -password '<password>' -execute 'select_statement' -format '<format>' > <file_path>/<file_name>.csv where the format could be csv , json or column . Example: sudo /usr/bin/influx -database 'telegraf' -host 'localhost' -username 'admin'  -password '123456789' -execute 'select * from mem' -format 'csv' > /home/googlielmo/influxdb-export/mem-export.csv

jOOQ: code generation in Eclipse

jOOQ allows code generation from a database schema through ANT tasks, Maven and shell command tools. But if you're working with Eclipse it's easier to create a new Run Configuration to perform this operation. First of all you have to write the usual XML configuration file for the code generation starting from the database: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-2.0.4.xsd">   <jdbc>     <driver>oracle.jdbc.driver.OracleDriver</driver>     <url>jdbc:oracle:thin:@dbhost:1700:DBSID</url>     <user>DB_FTRS</user>     <password>password</password>   </jdbc>   <generator>     <name>org.jooq.util.DefaultGenerator</name>     <database>       <name>org.jooq.util.oracle.OracleDatabase</name>     ...

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...