Skip to main content

Exploring the Spline Data Tracker and Visualization tool for Apache Spark (Part 2)

In part 1 we have learned how to test data lineage info collection with Spline from a Spark shell. The same can be done in any Scala or Java Spark application. The same dependencies for the Spark shell need to be registered in your build tool of choice (Maven, Gradle or sbt):

groupId: za.co.absa.spline
artifactId: spline-core
version: 0.3.5

groupId: za.co.absa.spline
artifactId: spline-persistence-mongo
version:0.3.5

groupId: za.co.absa.spline
artifactId:spline-core-spark-adapter-2.3
version:0.3.5

With reference to Scala and Spark 2.3.x, a Spark job like this:

// Create the Spark session
val sparkSession = SparkSession
   .builder()
   .appName("Spline Tester")
   .getOrCreate()
 
// Init Spline
System.setProperty("spline.persistence.factory", "za.co.absa.spline.persistence.mongo.MongoPersistenceFactory")
System.setProperty("spline.mongodb.url", args(0))
System.setProperty("spline.mongodb.name", args(1))
import za.co.absa.spline.core.SparkLineageInitializer._
sparkSession.enableLineageTracking()

//Do something with DataFrames
import sparkSession.sqlContext.implicits._
val df1 = sparkSession.sparkContext.parallelize(1 to 10000, 42).toDF("FirstValue")
val df2 = sparkSession.sparkContext.parallelize(1.to(100000, 17), 42).toDF("SecondValue")

val output = df1.crossJoin(df2).where('FirstValue % 42 === 'SecondValue % 42)

// Write results to file system
output.write.format("parquet").save("splinetester.parquet")

// Stop the Spark Session
sparkSession.stop()


can be submitted to a Spark cluster this way:

$SPARK_HOME/bin/spark-submit --class org.googlielmo.splinetest.SplineExample --master <url> --packages "za.co.absa.spline:spline-core:0.3.5,za.co.absa.spline:spline-persistence-mongo:0.3.5,za.co.absa.spline:spline-core-spark-adapter-2.3:0.3.5" splinetest-1.0.jar mongodb://<username>:<password>@<hostname>:<port> <dbname>

The Spline configuration properties can be also stored into a properties file in the application classpath. Here's the full list of the available Spline properties:

  • spline.mode: 3 possible values, BEST_EFFORT (default), DISABLED, REQUIRED. If BEST_EFFORT, Spline tries to initialize itself, but if fails it switches to DISABLED mode so that the Spark application can proceed normally with no lineage tracking. If DISABLED, no lineage tracking at all happens. If REQUIRED, whether Spline should fail, for any reason, to initialize itself, the Spark application aborts with an error.
  • spline.persistence.factory: could be za.co.absa.spline.persistence.mongo.MongoPersistenceFactory (for persistence to MongoDB) or za.co.absa.spline.persistence.hdfs.HdfsPersistenceFactory (for persistence to HDFS).
  • spline.mongodb.url: the MongoDB connection string (for MongoDB persistence only).
  • spline.mongodb.name: the MongoDB database name (for MongoDB persistence only).
  • spline.persistence.composition.factories: a comma separated list of factories to delegate to (in case of Composition Factories only).

The first time Spline is enabled from a Spark job, it creates 6 collections into the destination MongoDB database:

  • attributes_v4: info about the attributes of the involved  Spark Datasets.
  • dataTypes_v4: info about the data types for each data lineage.
  • datasets_v4: info about the DataSets.
  • lineages_v4: the data lineages graphs for Spark Datasets.
  • operations_v4: the operations on DataSets across lineages.
  • transformations_v4: the transformations on DataSets across lineages.

The documents in those 6 collections are used by the Spline web application to generate the visual representation of the lineages in the UI.
In the third and last part of this series, I am going to share the outcome after the first weeks of adoption of this project in Spark pre-production environments.

Comments

Post a Comment

Popular posts from this blog

Exporting InfluxDB data to a CVS file

Sometimes you would need to export a sample of the data from an InfluxDB table to a CSV file (for example to allow a data scientist to do some offline analysis using a tool like Jupyter, Zeppelin or Spark Notebook). It is possible to perform this operation through the influx command line client. This is the general syntax: sudo /usr/bin/influx -database '<database_name>' -host '<hostname>' -username '<username>'  -password '<password>' -execute 'select_statement' -format '<format>' > <file_path>/<file_name>.csv where the format could be csv , json or column . Example: sudo /usr/bin/influx -database 'telegraf' -host 'localhost' -username 'admin'  -password '123456789' -execute 'select * from mem' -format 'csv' > /home/googlielmo/influxdb-export/mem-export.csv

jOOQ: code generation in Eclipse

jOOQ allows code generation from a database schema through ANT tasks, Maven and shell command tools. But if you're working with Eclipse it's easier to create a new Run Configuration to perform this operation. First of all you have to write the usual XML configuration file for the code generation starting from the database: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-2.0.4.xsd">   <jdbc>     <driver>oracle.jdbc.driver.OracleDriver</driver>     <url>jdbc:oracle:thin:@dbhost:1700:DBSID</url>     <user>DB_FTRS</user>     <password>password</password>   </jdbc>   <generator>     <name>org.jooq.util.DefaultGenerator</name>     <database>       <name>org.jooq.util.oracle.OracleDatabase</name>     ...

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...