Skip to main content

Quick start with Apache Livy (part 2): the REST APIs

The second post of this series focuses on how to run a Livy server instance and start playing with its REST APIs. The steps below are meant for a Linux environment (any distribution).

Prerequisites

The prerequisites to start a Livy server are the following:
  • The JAVA_HOME env variable set to a JDK/JRE 8 installation.
  • A running Spark cluster.

Starting the Livy server

Download the latest version (0.4.0-incubating at the time this post is written) from the official website and extract the archive content (it is a ZIP file). Then setup the SPARK_HOME env variable to the Spark location in the server (for simplicity in this post I am assuming that the cluster is in the same machine as for the Livy server, but in the next post I will go through the customization of the configuration files, including the connection to a remote Spark cluster, wherever it is). By default Livy writes its logs into the $LIVY_HOME/logs location: you need to manually create this directory. Finally you can start the server:

$LIVY_HOME/bin/livy-server

Verify that the server is running by connecting to its web UI, which uses port 8998 by default:

http://<livy_host>:8998/ui

Using the REST APIs with Python

Livy offers REST APIs to start interactive sessions and submit Spark code the same way you can do with a Spark shell or a PySpark shell. The examples in this post are in Python. Let's create an interactive session through a POST request first:

curl -X POST --data '{"kind": "pyspark"}' -H "Content-Type: application/json" localhost:8998/sessions

The kind attribute specifies which kind of language we want to use (pyspark is for Python). Other possible values for it are spark (for Scala) or sparkr (for R). If the request has been successful, the JSON response content contains the id of the open session:

{"id":0,"appId":null,"owner":null,"proxyUser":null,"state":"starting","kind":"pyspark","appInfo":{"driverLogUrl":null,"sparkUiUrl":null},"log":["stdout: ","\nstderr: "]}

You can double check through the web UI:

You can check the status of a given session any time through the REST API:

curl localhost:8998/sessions/<session_id> | python -m json.tool

Let's execute a code statement:

curl localhost:8998/sessions/0/statements -X POST -H 'Content-Type: application/json' -d '{"code":"2 + 2"}'

The code attribute contains the Python code you want to execute. The response of this POST request contains the id of the statement and the its execution status:

{"id":0,"code":"2 + 2","state":"waiting","output":null,"progress":0.0}

To check if a statement has been completed and get the result:

curl localhost:8998/sessions/0/statements/0

If a statement has been completed, the result of the execution is returned as part of the response:

{"id":0,"code":"2 + 2","state":"available","output":{"status":"ok","execution_count":0,"data":{"text/plain":"4"}},"progress":1.0}

This information is available through the web UI as well:



The same way you can submit any PySpark code:

curl localhost:8998/sessions/0/statements -X POST -H 'Content-Type: application/json' -d '{"code":"sc.parallelize([1, 2, 3, 4, 5]).count()"}'


When you're done, you can close the session:

curl localhost:8998/sessions/0 -X DELETE

Comments

Popular posts from this blog

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...

Load testing MongoDB using JMeter

Apache JMeter ( http://jmeter.apache.org/ ) added support for MongoDB since its 2.10 release. In this post I am referring to the latest JMeter release (2.13). A preliminary JMeter setup is needed before starting your first test plan for MongoDB. It uses Groovy as scripting reference language, so Groovy needs to be set up for our favorite load testing tool. Follow these steps to complete the set up: Download Groovy from the official website ( http://www.groovy-lang.org/download.html ). In this post I am referring to the Groovy release 2.4.4, but using later versions is fine. Copy the groovy-all-2.4.4.jar to the $JMETER_HOME/lib folder. Restart JMeter if it was running while adding the Groovy JAR file. Now you can start creating a test plan for MongoDB load testing. From the UI select the MongoDB template ( File -> Templates... ). The new test plan has a MongoDB Source Config element. Here you have to setup the connection details for the database to be tested: The Threa...

Evaluating Pinpoint APM (Part 1)

I started a journey evaluating Open Source alternatives to commercial New Relic and AppDynamics tools to check if some is really ready to be used in a production environment. One cross-platform Application Performance Management (APM) tool that particularly caught my attention is Pinpoint . The current release supports mostly Java applications and JEE application servers and provides support also for the most popular OS and commercial relational databases. APIs are available to implement new plugins to support specific systems. Pinpoint has been modeled after Google Dapper and promises to install agents without changing a single line of code and mininal impact (about 3% increase in resource usage) on applications performance. Pinpoint is licensed under the Apache License, Version 2.0 . Architecture Pinpoint has three main components:  - The collector: it receives monitoring data from the profiled applications. It stores those information in HBase .  - The web UI: the f...