Skip to main content

Time Series & Deep Learning (Part 2 of N): Data Preparation for Training and Evaluation of a LSTM

In the second post of this series we are going to learn how to prepare data for training and evaluation of a LSTM neural network for time series forecasting. Same as for any other post of this series I am referring to Python 3. The data set used is the same as for part 1.
LSTM (Long-Short Term Memory) neural networks are a specialization of RNNs (Recurrent Neural Networks) introduced by Sepp Hochreiter and Jurgen Schmiduber in 1997 to solve the problem of the Vanishing Gradient affecting RNNs. LSTMs are used in real-world applications of language translation, text generation, image captioning, music generation and time series forecasting. You can find more info about LSTMs in my book or wait for one of my next posts of this series. This post focuses mostly on one of the best practices for data preparation before using a data set for training and evaluation of a LSTM in a time series forecasting problem with the Keras library.
Let's load the data set first:

from pandas import read_csv
from pandas import datetime

def parser(x):
    return datetime.strptime(x, '%Y-%m-%d')
features = ['date', 'value']
series = read_csv('./advance-retail-sales-building-materials-garden-equipment-and-supplies-dealers.csv', usecols=features, header=0, parse_dates=[1], index_col=1, squeeze=True, date_parser=parser)


The first action to do is to transform the time series in a way that the forecasting can be threat as a supervised learning problem. In supervised learning typically a data set is divided into input (containing the independent variables) and output (containing the target variable). We are going to use the observation from the previous time step (identified as t-1) as input and the observation at the current time step (identified as t) as output. No need to implement this transformation logic from scratch, as we can use the shift function available for pandas DataFrames. The input variables can be built by shifting of one place down all the values of the original time series. The output is the original time series. Finally we concatenate both series in a DataFrame. Because we need to apply this process to the values of the original data set, it would be good practice to implement a function for it:

from pandas import DataFrame
from pandas import concat

def tsToSupervised(series, lag=1):
    seriesDf = DataFrame(series)
    columns = [seriesDf.shift(idx) for idx in range(1, lag+1)]
    columns.append(seriesDf)
    seriesDf = concat(columns, axis=1)
    seriesDf.fillna(0, inplace=True)
    return seriesDf

supervisedDf = tsToSupervised(series, 1)


Here is a sample of how the supervised DataFrame looks like:

supervisedDf.head()












Is the data set now ready to be used to train and validate the network? Not yet. Other transformations need to be done. But this would be the topic of the next post.
The complete example would be released as a Jupyter notebook at the end of the first part of this series.

Comments

Popular posts from this blog

jOOQ: code generation in Eclipse

jOOQ allows code generation from a database schema through ANT tasks, Maven and shell command tools. But if you're working with Eclipse it's easier to create a new Run Configuration to perform this operation. First of all you have to write the usual XML configuration file for the code generation starting from the database: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-2.0.4.xsd">   <jdbc>     <driver>oracle.jdbc.driver.OracleDriver</driver>     <url>jdbc:oracle:thin:@dbhost:1700:DBSID</url>     <user>DB_FTRS</user>     <password>password</password>   </jdbc>   <generator>     <name>org.jooq.util.DefaultGenerator</name>     <database>       <name>org.jooq.util.oracle.OracleDatabase</name>     ...

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...

TagUI: an Excellent Open Source Option for RPA - Introduction

 Photo by Dinu J Nair on Unsplash Today I want to introduce  TagUI , an RPA (Robotic Process Automation) Open Source tool I am using to automate test scenarios for web applications. It is developed and maintained by the AI Singapore national programme. It allows writing flows to automate repetitive tasks, such as regression testing of web applications. Flows are written in natural language : English and other 20 languages are currently supported. Works on Windows, Linux and macOS. The TagUI official documentation can be found  here . The tool doesn't require installation: just go the official GitHub repository and download the archive for your specific OS (ZIP for Windows, tar.gz for Linux or macOS). After the download is completed, unpack its content in the local hard drive. The executable to use is named  tagui  (.cmd in Windows, .sh for other OS) and it is located into the  <destination_folder>/tagui/src  directory. In order to ...