Skip to main content

DataWorks Summit 2018, Berlin Edition: come to attend my talk.

AI, Machine Learning and Deep Learning are getting an hype nowadays even if most part of the algorithms and models at their core are around since long time:

1805 Least Squares
1812 Bayes' Theorem
1913 Markov Chains
1950 Turing's Learning Machine
1957 Perceptron
1967 Nearest Neighbor
1970 Automatic Differentiation
1972 TF-IDF
1980 Neocognitron
1981 Explanation Based Learning
1982 Recurrent Neural Network
1970 Back Propagation
1989 Reinforcement Learning
1995 Random Forest Algorithm
1995 Support Vector Machines
1997 LSTM

So what are the reasons that speed up and accelerated the implementation and made possible today for the theory to become reality?
There are several factors:
 - Cheaper computation: in the past hardware was a constraining factor for AI/ML/DL. Late advance in hardware (coupled with improved tools and software
frameworks) and new computational models (in particular around GPUs) have accelerated AI/ML/DL adoption.
 - Cheaper storage: the increased number of available data means more space needed for storage. Advance in hardware, cost reduction and improved performance made possible the implementation of new storage systems without the typical limitations of relational databases.
 - More advanced algorithms: less expensive compute and storage enable development and training of more advanced algorithms. As a result, DL is nowsolving specific problems like image classification or fraud detection with astonishing accuracy (and more sophisticated algorithms will continue to improve the state of the art).
 - More and bigger investments: investment in AI is no longer confined to universities or research institutes, but is done from many other entities such as tech giants, governments, startups and large enterprises across almost every industry sector.
 - Bigger data availability: AI/ML/DL need a huge amount of data to learn. The digital transformation of society is providing tons of raw material to fuel their advances. Big data coming from diverse sources such as IoT sensors, social and mobile computing, healthcare and many more new applications can be used to train models.
But often just getting data from any possible data source, in particular from the edge, requires moving mountains. Please attend my talk at the DataWorks Summit in Berlin on April 18th if you want to learn how to make edge data ingestion and analytics easier using a single tool, StreamSets Data Collector Edge, which is an ultralight, platform independent and small-footprint Open Source solution written in Go for streaming data from resource-constrained sensors and personal devices (like medical equipment or smartphones) to Apache Kafka, HDFS, Elastic Search and many other destinations.

Comments

Popular posts from this blog

jOOQ: code generation in Eclipse

jOOQ allows code generation from a database schema through ANT tasks, Maven and shell command tools. But if you're working with Eclipse it's easier to create a new Run Configuration to perform this operation. First of all you have to write the usual XML configuration file for the code generation starting from the database: <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-2.0.4.xsd">   <jdbc>     <driver>oracle.jdbc.driver.OracleDriver</driver>     <url>jdbc:oracle:thin:@dbhost:1700:DBSID</url>     <user>DB_FTRS</user>     <password>password</password>   </jdbc>   <generator>     <name>org.jooq.util.DefaultGenerator</name>     <database>       <name>org.jooq.util.oracle.OracleDatabase</name>     ...

Turning Python Scripts into Working Web Apps Quickly with Streamlit

 I just realized that I am using Streamlit since almost one year now, posted about in Twitter or LinkedIn several times, but never wrote a blog post about it before. Communication in Data Science and Machine Learning is the key. Being able to showcase work in progress and share results with the business makes the difference. Verbal and non-verbal communication skills are important. Having some tool that could support you in this kind of conversation with a mixed audience that couldn't have a technical background or would like to hear in terms of results and business value would be of great help. I found that Streamlit fits well this scenario. Streamlit is an Open Source (Apache License 2.0) Python framework that turns data or ML scripts into shareable web apps in minutes (no kidding). Python only: no front‑end experience required. To start with Streamlit, just install it through pip (it is available in Anaconda too): pip install streamlit and you are ready to execute the working de...

TagUI: an Excellent Open Source Option for RPA - Introduction

 Photo by Dinu J Nair on Unsplash Today I want to introduce  TagUI , an RPA (Robotic Process Automation) Open Source tool I am using to automate test scenarios for web applications. It is developed and maintained by the AI Singapore national programme. It allows writing flows to automate repetitive tasks, such as regression testing of web applications. Flows are written in natural language : English and other 20 languages are currently supported. Works on Windows, Linux and macOS. The TagUI official documentation can be found  here . The tool doesn't require installation: just go the official GitHub repository and download the archive for your specific OS (ZIP for Windows, tar.gz for Linux or macOS). After the download is completed, unpack its content in the local hard drive. The executable to use is named  tagui  (.cmd in Windows, .sh for other OS) and it is located into the  <destination_folder>/tagui/src  directory. In order to ...