Skip to main content

Posts

Showing posts from May, 2020

Deep Learning based CBIR 101 (Part 2): the basics

In part 1 of this series a definition of CBIR has been given. Let's now understand what's the typical flow for it. The diagram in figure 1 shows that there are two parts, one that happens offline and another which is online: Figure 1 Starting from an image storage, a preliminary trained Deep Neural Network is used to extract the features from images. Extracted features are then stored in a feature database. This happens offline any time new images are added to the storage. What happens online is the search process itself. Any time a user uploads a query image, the same Deep Neural Network used for feature extraction is used to extract the input image features. Then the distance from the query image features and the features in the database are computed. The closer the distance, the higher the relevance is. The closest features are then sorted and the corresponding images are returned as results. Basic implementation: data set preparation To make things more clear,...